Add like
Add dislike
Add to saved papers

A machine learning based approach for identifying traumatic brain injury patients for whom a head CT scan can be avoided.

Head CT scan is more often used to evaluate patients with suspected traumatic brain injury (TBI). However, the use of head CT scans in evaluating TBI is costly with low value endeavor. In this paper, we propose a new algorithm and a set of features to help clinicians determine which patients evaluated for TBI need a head CT scan using cost sensitive random forest (CSRF) classifier. We show that random forest (RF) and CSRF are useful methods for identifying patients likely to have a positive head CT scan. The proposed algorithm has superior diagnostic accuracy in comparison to the Canadian head CT algorithm, which is currently the most accurate and widely used algorithm for determining which TBI patients need a head CT scan. In the highest sensitivity (i.e. 100%), our method outperforms the Canadian rule in terms of specificity, accuracy and area under ROC curve using cost sensitive classifier. Clinical implementation of this algorithm can help decrease financial costs associated with Emergency Department evaluations for traumatic brain injury, while decreasing patient exposure to avoidable ionizing radiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app