Add like
Add dislike
Add to saved papers

Design and optimization of PARTNER: a parallel actuated robotic trainer for NEuroRehabilitation.

Robotic devices are a promising and dynamic tool in the realm of post-stroke rehabilitation. Researchers are still investigating how the use of robots affects motor learning and what design characteristics best encourage recovery. We present a parallel-actuated, end-effector robot designed to provide spatial assistance for upper-limb therapy while exhibiting low impedance and high backdrivability. A gradient based optimization was performed to find an optimal design that accounted for force isotropy, mechanical advantage, workspace size, and counter-balancing. A beta prototype has been built to these specifications (low impedance and high backdrivability) and has undergone initial controller performance as well as fit and function testing. By fitting a nonlinear model to experimental frequency response data, the apparent mass, viscous friction coefficient, and dynamic dry friction coefficient were determined to be 0.242 kg, 0.114 Ns/m, and 0.894 N respectively. The robot will serve as a testing platform to investigate motor learning and evaluate the efficacy of control schemes for post-stroke movement therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app