Add like
Add dislike
Add to saved papers

Parameter estimation for gene regulatory networks: a two-stage MCMC Bayesian approach.

Genetic regulatory networks have emerged as a useful way to elucidate the biochemical pathways for biological functions. Yet, determination of the exact parametric forms for these models remain a major challenge. In this paper, we present a novel computational approach implemented in C++ to solve this inverse problem. This takes the form of an optimization stage first after which Bayesian filtering takes place. The key advantage of such a flexible, general and robust approach is that it provides us with a joint probability distribution of the model parameters instead of single estimates, which we can propagate to final predictions. We apply these ideas to time series data from gene circuit models using state space representation. We show that unsound terms from a more generalized model can be efficiently pruned by our approach. We believe our work offers a new insight towards understanding the behaviour, mechanisms and thermodynamics of system biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app