Add like
Add dislike
Add to saved papers

Computational modeling of high frequency oscillations recorded with clinical intracranial macroelectrodes.

High Frequency Oscillations (HFOs) are a potential biomarker of epileptogenic regions. They have been extensively investigated in terms of automatic detection, classification and feature extraction. However, the mechanisms governing the generation of HFOs as well as the observability conditions on clinical intracranial macroelectrodes remain elusive. In this paper, we propose a novel physiologically-relevant macroscopic model for accurate simulation of HFOs as invasively recorded in epileptic patients. This model accounts for both the temporal and spatial properties of the cortical patch at the origin of epileptiform activity. Indeed, neuronal populations are combined with a 3D geometrical representation to simulate an extended epileptic source. Then, by solving the forward problem, the contributions of neuronal population signals are projected onto intracerebral electrode contacts. The obtained signals are qualitatively and quantitatively compared to real HFOs, and a relationship is drawn between macroscopic model parameters such as synchronization and spatial extent on the one hand, and HFO features such as the wave and fast ripple (200-600 Hz) components, on the other hand.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app