Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Subthreshold linear modeling of dendritic trees: a computational approach.

The design of communication systems based on the transmission of information through neurons is envisioned as a key technology for the pervasive interconnection of future wearable and implantable devices. While previous literature has mainly focused on modeling propagation of electrochemical spikes carrying natural information through the nervous system, in recent work the authors of this paper proposed the so-called subthreshold electrical stimulation as a viable technique to propagate artificial information through neurons. This technique promises to limit the interference with natural communication processes, and it can be successfully approximated with linear models. In this paper, a novel model is proposed to account for the subthreshold stimuli propagation from the dendritic tree to the soma of a neuron. A computational approach is detailed to obtain this model for a given realistic 3D dendritic tree with an arbitrary morphology. Numerical results from the model are obtained over a stimulation signal bandwidth of 1KHz, and compared with the results of a simulation through the NEURON software.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app