Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of Hypoxemia on Fetal Ventricular Deformation in a Chronically Instrumented Sheep Model.

We hypothesized that in near-term sheep fetuses, hypoxemia changes myocardial function as reflected in altered ventricular deformation on speckle-tracking echocardiography. Fetuses in 21 pregnant sheep were instrumented. After 4 d of recovery, fetal cardiac function was assessed by echocardiography at baseline, after 30 and 120 min of induced fetal hypoxemia and after its reversal. Left (LV) and right (RV) ventricular cardiac output and myocardial strain were measured. Baseline mean (standard deviation [SD]) LV and RV global longitudinal strains were -18.7% (3.8) and -14.3% (5.3). Baseline RV global longitudinal and circumferential deformations were less compared with those of the left ventricle (p = 0.016 and p < 0.005). LV, but not RV, global longitudinal strain was decreased (p = 0.003) compared with baseline with hypoxemia. Circumferential and radial strains did not exhibit significant changes. In the near-term sheep fetus, LV global longitudinal and circumferential strains are more negative than RV strains. Acute hypoxemia leads to LV rather than RV dysfunction as reflected by decreased deformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app