Add like
Add dislike
Add to saved papers

Hemi-ovariectomies promote a decrease in the dendritic lengths of CA1 and CA3 neurons: A dimorphic effect of the cerebral hemispheres.

Brain Research 2017 May 2
Certain structures of the central nervous system (CNS) are morphologically and functionally related to the ovaries. Ovariectomy has been used to study the functional role of the ovaries in the CNS, as well as the role of the CNS on the reproductive system. In the present study, the effects of left and right hemi-ovariectomy on the morphology of pyramidal neurons from the CA1 and CA3 regions of the ventral hippocampus were studied. During the estrus phase, female Long-Evans rats underwent either left and right hemi-ovariectomies or left and right sham surgeries. Three estrous cycles later, the animals were sacrificed, and their brains were processed in Golgi-Cox stain and analyzed by the Sholl method to calculate the dendritic length of the CA1 and CA3 neurons of the left and right hemispheres. The results indicate that the dendritic lengths of the basilar and apical arbors of the CA1 neurons from the left hemisphere were shorter after both left and right hemi-ovariectomy, while the CA1 neurons from the right hemisphere were not affected by either procedure. However, the basilar dendritic arbors of the CA3 neurons from both hemispheres were affected by right hemi-ovariectomy. The spine density only decreased in the apical arbors in the CA3 neurons from the left hemisphere of rats that underwent right hemi-ovariectomy. This study's results indicate that hemi-ovariectomy in adult rats changes in the morphology of the CA1 and CA3 pyramidal neurons in the ventral hippocampus and that there are dimorphic responses between the hemispheres.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app