Add like
Add dislike
Add to saved papers

Skin delivery of hydrophilic molecules from liposomes and polysaccharide-coated liposomes.

OBJECTIVES: Liposomes are commonly used in cosmetic formulations to increase the bioavailability of active ingredients. We have previously shown that polysaccharide coating of liposomes improves their resistance to surfactants and electrolytes. In the current study, we have assessed the impact of coating on the skin penetration enhancer properties of liposomes.

METHODS: The physicochemical properties of coated liposomes (Ionosomes™) were evaluated before and after encapsulation of two different hydrophilic molecules (caffeine and a hexapeptide), and compared to those observed with non-coated liposomes. Moreover, in vitro permeation experiments were performed using Franz™-modified diffusion cells, with normal human skin as membranes.

RESULTS: Results showed that both coated and non-coated liposomes significantly improved the bioavailability of hydrophilic active molecules in skin, compared to reference solutions. Although liposome coating slightly reduced entrapment efficiency, the delivery of active molecules was not adversely affected by the process. In conclusion, polysaccharide coating of liposomes allows for better protection of their integrity without compromising the skin bioavailability of the active molecules that they convoy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app