Add like
Add dislike
Add to saved papers

Exploring Protein-Nanoparticle Interactions with Coarse-Grained Protein Folding Models.

Small 2017 May
Understanding the fundamental biophysics behind protein-nanoparticle (NP) interactions is essential for the design and engineering bio-NP systems. The authors describe the development of a coarse-grained protein-NP model that utilizes a structure centric protein model. A key feature of the protein-NP model is the quantitative inclusion of the hydrophobic character of residues in the protein and their interactions with the NP surface. In addition, the curvature of the NP is taken into account, capturing the protein behavior on NPs of different size. The authors evaluate this model by comparison with experimental results for structure and adsorption of a model protein interacting with an NP. It is demonstrated that the simulation results recapitulate the structure of the small α/β protein GB1 on the NP for data from circular dichroism and fluorescence spectroscopy. In addition, the calculated protein adsorption free energy agrees well with the experimental value. The authors predict the dependence of protein folding on the NP size, surface chemistry, and temperature. The model has the potential to guide NP design efforts by predicting protein behavior on NP surfaces with various chemical properties and curvatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app