Add like
Add dislike
Add to saved papers

Analysis of selected designer benzodiazepines by ultra high performance liquid chromatography with high-resolution time-of-flight mass spectrometry and the estimation of their partition coefficients by micellar electrokinetic chromatography.

A new ultra high performance liquid chromatography with electrospray ionization time of flight mass spectrometry method for the selective and sensitive separation, identification, and determination of selected designer benzodiazepines (namely, pyrazolam, phenazepam, etizolam, flubromazepam, diclazepam, deschloroetizolam, bentazepam, nimetazepam, and flubromazolam) in human serum was developed. The separation of the studied designer benzodiazepines was achieved on C18 chromatographic column using gradient elution within 6 min without any significant matrix interferences. Liquid-liquid extraction with butyl acetate was applied for serum samples cleanup and preconcentration of studied designer benzodiazepines. The method was validated in terms of linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery, and sample stability. The limit of detection values were 0.10-0.15 ng/mL. The method was applied to a spiked serum sample to demonstrate its applicability for systematic toxicology analysis. Furthermore, a capillary chromatographic method with micellar electrokinetic chromatography was used for the estimation of partition coefficients of studied designer benzodiazepines as important parameters to evaluate their pharmacological and toxicological properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app