Add like
Add dislike
Add to saved papers

Selection and Characterization of DNA Aptamers for Electrochemical Biosensing of Carbendazim.

This article reports a novel aptamer-based impedimetric detection of carbendazim, a commonly used benzimidazole fungicide in agriculture. High affinity and specificity DNA aptamers against carbendazim were successfully selected using systematic evolution of ligand by exponential enrichment (SELEX). The dissociation constants (Kds) of the selected DNA aptamers after 10 in vitro selection cycles were characterized using fluorescence-based assays showing values in the nanomolar range. The aptamer which showed the highest degree of affinity and conformation change was used to fabricate an electrochemical aptasensor via self-assembly of thiol-modified aptamer on gold electrodes. The aptasensor exploits the specific recognition of carbendazim by the aptamer immobilized on the gold surface which leads to conformational changes in the aptamer structure. This conformational change alters the access of a ferrocyanide/ferricyanide redox couple to the aptasensor surface. The aptasensor response is thus measured by following the increase in the electron transfer resistance of the redox couple using Faradaic electrochemical impedance spectroscopy. This method allowed a selective and sensitive label-free detection of carbendazim within a range of 10 pg/mL-10 ng/mL with a limit of detection of 8.2 pg/mL. The aptasensor did not show cross reactivity with other commonly used pesticides such as fenamiphos, isoproturon, atrazine, linuron, thiamethoxam, trifluralin, carbaryl, and methyl parathion. Moreover, the aptasensor has been applied in different spiked food matrixes showing high recovery percentages. We believe that the proposed aptasensor is a promising alternative to the currently used methods for carbendazim monitoring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app