Add like
Add dislike
Add to saved papers

Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.

In this study, the electrostatically embedded generalized molecular fractionation with conjugate caps (concaps) method (EE-GMFCC) was employed for efficient linear-scaling quantum mechanical (QM) calculation of total energies of RNAs. In the EE-GMFCC approach, the total energy of RNA is calculated by taking a proper combination of the QM energy of each nucleotide-centric fragment with large caps or small caps (termed EE-GMFCC-LC and EE-GMFCC-SC, respectively) deducted by the energies of concaps. The two-body QM interaction energy between non-neighboring ribonucleotides which are spatially in close contact are also taken into account for the energy calculation. Numerical studies were carried out to calculate the total energies of a number of RNAs using the EE-GMFCC-LC and EE-GMFCC-SC methods at levels of the Hartree-Fock (HF) method, density functional theory (DFT), and second-order many-body perturbation theory (MP2), respectively. The results show that the efficiency of the EE-GMFCC-SC method is about 3 times faster than the EE-GMFCC-LC method with minimal accuracy sacrifice. The EE-GMFCC-SC method is also applied for relative energy calculations of 20 different conformers of two RNA systems using HF and DFT, respectively. Both single-point and relative energy calculations demonstrate that the EE-GMFCC method has deviations from the full system results of only a few kcal/mol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app