Add like
Add dislike
Add to saved papers

A mathematical model predicting host mitochondrial pyruvate transporter activity to be a critical regulator of Mycobacterium tuberculosis pathogenicity.

Bio Systems 2017 May
Modulation of host metabolic machinery by Mycobacterium tuberculosis is a well established phenomenon. In our earlier study (Mehrotra et al., 2014), we observed a marked increase in acetyl-CoA levels in cells bearing virulent M. tuberculosis infections compared to host cells harbouring avirulent infections. The difference was observed inspite of similar levels of total host cellular pyruvate in both infection types. The present study aimed in capturing the cause for such a phenomenon that defines the pathogenicity of M. tuberculosis. Through mathematical model, we dissected the relative importance of virulence mediated effect on Pyruvate dehydrogenase (PDH) activity, rate of acetyl-CoA consumption and mitochondrial pyruvate transporter (MPC) activity in causing the observed outcomes. Simulation results exhibit MPC to be the key regulatory junction perturbed by virulent strains of M. tuberculosis leading to alteration of mitochondrial metabolic flux and regulation of acetyl-CoA formation. As an experimental validation, drug mediated inhibition of MPC activity was sufficient to reduce virulent bacillary loads, pointing towards a possible mechanistic target for drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app