Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Establishment of a novel mouse model for pioglitazone-induced skeletal muscle injury.

Toxicology 2017 May 2
Skeletal muscle (SKM) injury is one of the major safety concerns in risk assessment for drug development. However, no appropriate pre-clinical animal model exists to evaluate drug-induced SKM injury except that caused by fibrates and statins. Thiazolidinedione, a PPARγ agonistic drug for type 2 diabetes mellitus, is widely used clinically but can induce adverse effects such as hepatotoxicity and SKM injury, as has been reported in recent decades. Moreover, thiazolidinedione-induced SKM injury has only been reported in humans, and no evidence of SKM injury has been observed in rodents. To establish a drug-induced SKM injury mouse model, we administered pioglitazone with a glutathione biosynthesis inhibitor, L-buthionine-S,R-sulfoximine, to C57BL/6J mice for 2days and subsequently observed prominent increases in plasma aspartate aminotransferase and creatinine phosphokinase, which were associated with SKM lesions. Furthermore, plasma miR-206 (SKM-specific microRNA) level was significantly increased, whereas plasma miR-208 (heart-specific microRNA) was not detected, indicating that pioglitazone specifically caused SKM, not cardiac, injury. Furthermore, we revealed that pioglitazone-induced SKM injury was caused by oxidative stress that was independent of the PPARγ agonistic effect. This study demonstrated for the first time that the glutathione-depleted C57BL/6J mouse is a novel model for assessing drug-induced SKM injury in drug development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app