Add like
Add dislike
Add to saved papers

Spiky TiO 2 /Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity.

A facile approach for the preparation of spiky TiO2 /Au nanorod (NR) plasmonic photocatalysts has been demonstrated, which is through in situ nucleation and growth of spiky TiO2 onto AuNRs. Different aspect ratios of AuNRs in 2.5, 2.7, 4.1 and 4.5 have been applied to prepare spiky TiO2 /AuNR nanohybrids to achieve tunable and broad localized surface plasmon resonance (LSPR) bands. All spiky TiO2 /AuNR nanohybrids exhibit enhanced light harvesting by extending visible light absorption range by both transverse and longitudinal LSPR bands and decreasing light reflectance by their unique spiky structures. Compared to the bare AuNRs, commercial TiO2 (P25) and spiky TiO2 /Au nanosphere photocatalysts, the spiky TiO2 /AuNR photocatalysts exhibit significantly enhanced visible light photocatalytic activity in Rhodamine B (RhB) degradation due to their simultaneous enhancement in the light harvesting, charge utilization efficiency, and substrate accessibility. In particular, the spiky TiO2 /AuNR-685 photocatalysts show the best photocatalytic activity with ∼98.9% of the RhB degraded within 90 min under the irradiation of 420-780 nm, which could be ascribed to the most extended visible light absorption range and sufficient photon energy of TiO2 /AuNR-685 photocatalysts within this irradiation region. The bio-inspired nanostructure, as well as the facile and scalable fabrication approach, will open a new avenue for the rational design and preparation of high-performance photocatalysts for pollutant removal and water splitting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app