Add like
Add dislike
Add to saved papers

2-[(4-Chlorobenzyl) amino]-4-methyl-1,3-thiazole-5-carboxylic acid exhibits antidiabetic potential and raises insulin sensitivity via amelioration of oxidative enzymes and inflammatory cytokines in streptozotocin-induced diabetic rats.

Thiazole derivatives are potential candidates for drug development. They can be efficiently synthesized and are extremely active against several diseases, including diabetes. In our present study, we investigated the anti-diabetic, anti-oxidant and anti-inflammatory properties of 2-[(4-Chlorobenzyl) amino]-4-methyl-1,3-thiazole-5-carboxylic acid (BAC) a new thiazole derivative, in a streptozotocin (STZ) induced neonatal model of non-insulin dependent diabetes mellitus (NIDDM) rats. Diabetes was induced by injecting STZ (100mg/kg) intraperitoneally to two days old pups. BAC administration for 3 weeks significantly decreased blood glucose and raised insulin level and improves insulin sensitivity (KITT ) level. Additionally, BAC also suppressed several inflammatory cytokines generation as evidenced by decreased levels of serum tumor necrosis factor-α and interleukin-6. In addition, BAC also protects against hyperlipidemia and liver injury. Furthermore, BAC significantly restored pancreatic lipid peroxidation, catalase, superoxide dismutase, and reduced glutathione content. Histological studies of pancreatic tissues showed normal architecture after BAC administration to diabetic rats. Altogether, our results suggest that BAC successfully reduces the blood glucose level and possesses anti-oxidant as well as anti-inflammatory activity. This leads to decreased histological damage in diabetic pancreatic tissues suggesting the possibility of future diabetes treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app