Add like
Add dislike
Add to saved papers

Synthesis of fullerene (C 60 -monoadduct)-based water-compatible imprinted micelles for electrochemical determination of chlorambucil.

A novel water-compatible C60 -monoadduct based imprinted micelles was synthesized by the self-assembly of vinylic-C60 -monoadduct with sodium dodecylsulfate micellar system, in the presence of chlorambucil as a model template (anticancer drug). After template retrieval with acetonitrile, these imprinted micelles were immobilized at the surface of ionic liquid decorated carbon ceramic electrode. Herein, C60 -monoadduct (the head group of micelle) actually served as a nanomediator for electronic transmission across multiple interfaces. Such modification induced electrocatalytic characteristics by decreasing analyte oxidation overpotential and thereby augmented the electrode kinetics. Consequently, the differential pulse anodic stripping transduction was realized to be approximately four-fold as compared to the corresponding electrode modified without C60 -monoadduct. This revealed the potential role of fullerene as nanomediator in the signal transduction. Herein, ionic liquids facilitated electron transport by two-fold without any interfacial barrier through carbon layers than that realized with modified ceramic electrodes made in the absence of ionic liquids. A perfect linearity in the current-concentration profile under optimal conditions was observed for the analyte concentration in the range 1.47-247.20ngmL-1 , with the detection limits to the tune of 0.36ngmL-1 (S/N=3) in aqueous and real samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app