Add like
Add dislike
Add to saved papers

Nonamyloidogenic processing of amyloid beta precursor protein is associated with retinal function improvement in aging male APP swe /PS1ΔE9 mice.

Vision declines during normal aging and in Alzheimer's disease (AD). Although the toxic role of amyloid beta (Aβ) has been established in AD pathogenesis, its influence on the aging retina is unclear. Using APPswe /PS1ΔE9 transgenic (TG) mice, a classical AD model, the retinal cell function and survival was assessed by electroretinogram (ERG) recordings and immunofluorescent stainings. Strikingly, photopic ERG measurements revealed that the retinal response mediated by cones was preserved in aging TG mice relative to WT controls. In contrast to the cortex, the expression of mutated APPswe and PS1ΔE9 did not allow to detect Aβ or amyloid plaques in 13-month-old male TG retinae. In addition, the CTFβ/CTFα ratio was significantly lower in retinal samples than that in cortical extracts, suggesting that the nonamyloidogenic pathway may endogenously limit Aβ formation in the retina of male mice. Collectively, our data suggest that retinal-specific processing of amyloid may confer protection against AD and selectively preserve cone-dependent vision during aging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app