Add like
Add dislike
Add to saved papers

Screening inhibitors of xanthine oxidase from natural products using enzyme immobilized magnetic beads by high-performance liquid chromatography coupled with tandem mass spectrometry.

In this study, high-performance liquid chromatography coupled with tandem mass spectrometry was used to assess the results of bioactive compound screening from natural products using immobilized enzyme magnetic beads. We compared three commercial magnetic beads with modified amino, carboxy, and N-hydroxysuccinimide groups, respectively. Amino magnetic beads performed best for immobilization and were selected for further experiments. Xanthine oxidase was immobilized on amino magnetic beads and applied to screen potential inhibitors in fresh Zingiber officinale Roscoe, extracts of Scutellaria baicalensis Georgi, and Pueraria lobata Ohwi. In total, 12 potential xanthine oxidase ligands were identified from fresh Zingiber root and Scutellaria root extracts, of which eight were characterized and the concentration required for 50% inhibition was determined. Preliminary structure-function relationships were discussed based on these results. A convenient and effective method was therefore developed for the identification of active compounds from complex natural product mixtures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app