JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Astrocyte activation and capillary remodeling in modified bilateral common carotid artery occlusion mice.

OBJECTIVE: The cerebral ischemia leads to brain dysfunction with neuron degeneration and responses from astrocytes and vessels. The aim of this study was to study the changes of astrocyte and microvessel in modified BCCAO mice.

METHODS: Adult transgenic Tie2-GFP mice were subjected to modified BCCAO operation and cranial window implantation. CBF and neurological injury were examined after ischemia. Astrocytes and vessels were investigated by two-photon laser-scanning microscope and confocal laser-scanning microscope in vivo.

RESULTS: The CBF decreased to approximately 40% of the baseline in the ischemic mice (P<.05). The neuron damage was explicit after the cerebral ischemia (P<.05), while no significant impairment of the motor and cognitive function was detected (P>.05). The density of astrocyte and volume of the astrocyte soma was increased significantly after ischemia (P<.01). Meanwhile, the mean distance between the penetrating artery and the nearest astrocyte soma decreased significantly (P<.01). Besides, the increased diameter of capillary and change of vessel arrangement were observed.

CONCLUSION: The cerebral ischemia was successfully induced by this modified BCCAO model. Astrocyte activation and the capillary remodeling, including dilution of capillary and tortuosity, were observed in this model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app