Add like
Add dislike
Add to saved papers

Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance.

Maternal effects triggered by changes in the environment (e.g., nutrition or crowding) can influence the outcome of offspring-parasite interactions, with fitness consequences for the host and parasite. Outside of the classic example of antibody transfer in vertebrates, proximate mechanisms have been little studied, and thus, the adaptive significance of maternal effects on infection is not well resolved. We sought to determine why food-stressed mothers give birth to offspring that show a low rate of infection when the crustacean Daphnia magna is exposed to an orally infective bacterial pathogen. These more-resistant offspring are also larger at birth and feed at a lower rate. Thus, reduced disease resistance could result from slow-feeding offspring ingesting fewer bacterial spores or because their larger size allows for greater immune investment. To distinguish between these theories, we performed an experiment in which we measured body size, feeding rate, and susceptibility, and were able to show that body size is the primary mechanism causing altered susceptibility: Larger Daphnia were less likely to become infected. Contrary to our predictions, there was also a trend that fast-feeding Daphnia were less likely to become infected. Thus, our results explain how a maternal environmental effect can alter offspring disease resistance (though body size), and highlight the potential complexity of relationship between feeding rate and susceptibility in a host that encounters a parasite whilst feeding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app