Add like
Add dislike
Add to saved papers

ROCK/actin/MRTF signaling promotes the fibrogenic phenotype of fibroblast-like synoviocytes derived from the temporomandibular joint.

Malocclusion caused by abnormal jaw development or muscle overuse during mastication results in abnormal mechanical stress to the tissues surrounding the temporomandibular joint (TMJ). Excessive mechanical stress against soft and hard tissues around the TMJ is involved in the pathogenesis of inflammatory diseases, including osteoarthritis (OA). OA-related fibrosis is a possible cause of joint stiffness in OA. However, cellular and molecular mechanisms underlying fibrosis around the TMJ remain to be clarified. Here, we established a cell line of fibroblast‑like synoviocytes (FLSs) derived from the mouse TMJ. Then, we examined whether the Rho‑associated coiled‑coil forming kinase (ROCK)/actin/myocardin-related transcription factor (MRTF) gene regulatory axis positively regulates the myofibroblast (MF) differentiation status of FLSs. We found that i) FLSs extensively expressed the MF markers α‑smooth muscle actin (α‑SMA) and type I collagen; and ii) an inhibitor against the actin‑polymerizing agent ROCK, Y‑27632; iii) an actin-depolymerizing agent cytochalasin B; iv) an inhibitor of the MRTF/serum response factor‑regulated transcription, CCG‑100602, clearly suppressed the mRNA levels of α‑SMA and type I collagen in FLSs; and v) an MF differentiation attenuator fibroblast growth factor‑1 suppressed filamentous actin formation and clearly suppressed the mRNA levels of α-SMA and type I collagen in FLSs. These results strongly suggest that the ROCK/actin/MRTF axis promotes the fibrogenic activity of synoviocytes around the TMJ. Our findings partially clarify the molecular mechanisms underlying the emergence of TMJ‑OA and may aid in identifying drug targets for treating this condition at the molecular level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app