JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
REVIEW
Add like
Add dislike
Add to saved papers

Computational and theoretical advances in studies of intrinsically disordered proteins.

Intrinsically disordered proteins (IDPs) are increasingly realized to play diverse biological roles, ranging from molecular signaling to the formation of membraneless organelles. Their high degree of disorder makes them more challenging to study using the techniques of conventional structural biology, because any observable will be averaged over a heterogeneous ensemble of structures. Molecular simulations and theory are therefore a natural complement to experiment for studying the structure, dynamics and function of IDPs. The diverse time and length scales relevant to the roles played by IDPs require flexibility in the techniques applied. Here, I summarize some of the developments in simulation and theory in recent years, which have been driven by the desire to better capture IDP properties at different time- and length-scales. I also provide an outlook for how methods can be improved in the future and emerging problems which may be addressed by theory and simulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app