Add like
Add dislike
Add to saved papers

Profiling of Virulence Determinants in Cronobacter sakazakii Isolates from Different Plant and Environmental Commodities.

Cronobacter sakazakii is an emerging pathogen causing meningitis, sepsis and necrotizing enterocolitis in neonates and immune-compromised adults. The present study describes the profiling of different virulence factors associated with C. sakazakii isolates derived from plant-based materials and environmental samples (soil, water, and vacuum dust). All the isolates exhibited β-hemolysis and chitinase activity, and were able to utilize inositol. Among the nine virulence-associated genes, hly gene coding for hemolysin was detected in all the isolates followed by ompA (outer membrane protein); however, plasmid-borne genes were detected at a level of 60% for both cpa (cronobacter plasminogen activator) and eitA (Ferric ion transporter protein) gene, respectively. Furthermore, the isolate C. sakazakii N81 showed cytotoxicity for Caco-2 cells. The presence of the virulence determinants investigated in this study indicates the pathogenic potential of C. sakazakii with their plausible connection with clinical manifestations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app