Add like
Add dislike
Add to saved papers

Maxi-anion channels play a key role in glutamate-induced ATP release from mouse astrocytes in primary culture.

Neuroreport 2017 May 4
Astrocytes are an abundant source of ATP, which might be released from the cytosol into extracellular spaces under various conditions and even affect cell fate under some circumstances. In the present study, we aimed to evaluate the pathway(s) contributing toward glutamate-induced ATP release from mouse astrocytes. Firstly, our study of cultured astrocytes showed marked ATP release in response to stimuli of glutamate at different concentrations (0.1-1 mM), with an interesting bimodal distribution in time course. Inhibitors or blockers of potential pathways for ATP release such as exocytotic vesicular release, gap junction hemichannels, P2X7 receptors, and volume-sensitive outwardly rectifying chloride channels had no significant effects on the observed ATP release. In contrast, glutamate-induced ATP release from astrocytes was significantly inhibited by gadolinium (50 µM), an inhibitor of a maxi-anion channel; meanwhile, the application of gadolinium can allay glutamate-induced cell injury significantly. Thus, we propose that the maxi-anion channel might play an important role in glutamate-induced ATP release from mouse astrocytes and inhibition of maxi-anion channel activities to reduce ATP release can produce protective effects in the case of glutamate stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app