Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electrosensory capture during multisensory discrimination of nearby objects in the weakly electric fish Gnathonemus petersii.

Scientific Reports 2017 March 4
Animal multisensory systems are able to cope with discrepancies in information provided by individual senses by integrating information using a weighted average of the sensory inputs. Such sensory weighting often leads to a dominance of a certain sense during particular tasks and conditions, also called sensory capture. Here we investigated the interaction of vision and active electrolocation during object discrimination in the weakly electric fish Gnathonemus petersii. Fish were trained to discriminate between two objects using both senses and were subsequently tested using either only vision or only the active electric sense. We found that at short range the electric sense dominates over vision, leading to a decreased ability to discriminate between objects visually when vision and electrolocation provide conflicting information. In line with visual capture in humans, we call this dominance of the electric sense electrosensory capture. Further, our results suggest that the fish are able to exploit the advantages of multiple senses using vision and electrolocation redundantly, synergistically and complementarily. Together our results show that by providing similar information about the environment on different spatial scales, vision and the electric sense of G. petersii are well attuned to each other producing a robust and flexible percept.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app