Add like
Add dislike
Add to saved papers

Phase Transitions in Biological Systems with Many Components.

Biophysical Journal 2017 Februrary 29
Biological mixtures such as the cytosol may consist of thousands of distinct components. There is now a substantial body of evidence showing that, under physiological conditions, intracellular mixtures can phase separate into spatially distinct regions with differing compositions. In this article we present numerical evidence indicating that such spontaneous compartmentalization exploits general features of the phase diagram of a multicomponent biomolecular mixture. In particular, we show that demixed domains are likely to segregate when the variance in the intermolecular interaction strengths exceeds a well-defined threshold. Multiple distinct phases are likely to become stable under very similar conditions, which can then be tuned to achieve multiphase coexistence. As a result, only minor adjustments to the composition of the cytosol or the strengths of the intermolecular interactions are needed to regulate the formation of different domains with specific compositions, implying that phase separation is a robust mechanism for creating spatial organization. We further predict that this functionality is only weakly affected by increasing the number of components in the system. Our model therefore suggests that, for purely physico-chemical reasons, biological mixtures are naturally poised to undergo a small number of demixing phase transitions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app