Add like
Add dislike
Add to saved papers

RIP3 deficiency exacerbates inflammation in dextran sodium sulfate-induced ulcerative colitis mice model.

Ulcerative colitis (UC) is a chronic intestinal inflammatory disease. The receptor-interacting protein kinase 3 (RIP3) was reported to be involved in many inflammatory disease. However, the mechanism of RIP3 in the pathogenesis of UC is still unclear. To investigate the effects and possible mechanism of RIP3 in UC pathogenesis, RIP3-/- mice was used in dextran sulfate sodium (DSS)-induced colitis model. It was found that by DSS-induced colitis, RIP3-/- mice showed significantly enhanced colitis symptoms, including increased weight loss, colon shortening, and colonic mucosa damage and severity, but decreased production of interleukin 6 and interleukin 1β. The results showed that RIP3 deficiency could not ameliorate but exacerbate the severity of colitis. On the mechanism, it was found that messenger RNA expressions of several repair-associated cytokines including interleukin 6, interleukin 22, cyclooxygenase 2, epithelial growth factor receptor ligand Epiregulin and matrix metalloproteinase 10 were siginificant decreased in RIP3-/- mice. Thus, RIP3-/- mice exhibited an impaired tissue repair in response to DSS. In a conclusion, RIP3 deficiency exerted detrimental effects in DSS induced colitis partially because of the impaired repair-associated cytokines expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app