Add like
Add dislike
Add to saved papers

Targeting domain-III hinging of dengue envelope (DENV-2) protein by MD simulations, docking and free energy calculations.

The entry of the dengue virus is mediated by the conformational change in the envelope protein due to change in the endosomal pH. The structural study reveals that domain-III of the dengue envelope protein (DENV) shows the largest shift in its position during the entry of the virus. Therefore, targeting the hinge region of the domain-III may block the conformational changes in the DENV. In the present work, we have targeted the domain I/III hinge region using four known ligands used for the dengue envelope protein (serotype-2) and have intended to explore the specificity of one ligand R1 (5-(3-chlorophenyl)-N-(2-phenyl-2H-benzo[d][1,2,3]triazol-6-yl)furan-2-carboxamide) that succeeded the dengue inhibition by the molecular dynamics (MD) simulations in conjunction of the molecular docking and the binding free energy calculations. The residue interactions map shows Lys 296 of domain-III of the DENV-2, which might be responsible for binding small molecules between domain I/III interface, as an important residue conserved in all the dengue serotypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app