JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Disruption of Endothelial Cell Homeostasis Plays a Key Role in the Early Pathogenesis of Coronary Artery Abnormalities in Kawasaki Disease.

Scientific Reports 2017 March 4
Disruption of endothelial cell homeostasis may be associated with the pathogenesis of coronary artery abnormalities (CAA) in Kawasaki disease (KD). We sought to clarify the poorly understood pathogenic role of endothelial cell survival and death in KD vasculitis. Human umbilical vein endothelial cells (HUVECs) stimulated with sera from KD patients, compared with sera from patients with bacterial infections, exhibited significant increases in cytotoxicity, high mobility group box protein 1 (HMGB-1), and caspase-3/7 and a decrease in phosphorylated Akt/Akt (pAkt/Akt) ratios. HUVECs stimulated with sera from KD patients treated with immunoglobulin (IG) showed significantly decreased cytotoxicity, HMGB-1, and caspase-3/7 levels and increased pAkt/Akt ratios, as compared with results for untreated HUVECs (P < 0.001, P = 0.008, P = 0.040, and P < 0.001, respectively). In HUVECs stimulated with sera from KD patients, the increased cytotoxicity levels and the suppression of increased pAkt/Akt ratios after subsequent IG treatment were closely related to the development of CAA (P = 0.002 and P = 0.035). Our data reveal that shifting the balance toward cell death rather than survival appears to perturb endothelial cell homeostasis and is closely related to the development of CAA. The cytoprotective effects of IG treatment appear to ameliorate endothelial cell homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app