Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

VEGF-A-Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4-Independent Metabolic Improvements.

Diabetes 2017 June
Adipocyte-derived vascular endothelial growth factor-A (VEGF-A) plays a crucial role in angiogenesis and contributes to adipocyte function and systemic metabolism, such as insulin resistance, chronic inflammation, and beiging of subcutaneous adipose tissue. Using a doxycycline-inducible adipocyte-specific VEGF-A-overexpressing mouse model, we investigated the dynamics of local VEGF-A effects on tissue beiging of adipose tissue transplants. VEGF-A overexpression in adipocytes triggers angiogenesis. We also observed a rapid appearance of beige fat cells in subcutaneous white adipose tissue as early as 2 days postinduction of VEGF-A. In contrast to conventional cold-induced beiging, VEGF-A-induced beiging is independent of interleukin-4. We subjected metabolically healthy VEGF-A-overexpressing adipose tissue to autologous transplantation. Transfer of subcutaneous adipose tissues taken from VEGF-A-overexpressing mice into diet-induced obese mice resulted in systemic metabolic benefits, associated with improved survival of adipocytes and a concomitant reduced inflammatory response. These effects of VEGF-A are tissue autonomous, inducing white adipose tissue beiging and angiogenesis within the transplanted tissue. Our findings indicate that manipulation of adipocyte functions with a bona fide angiogenic factor, such as VEGF-A, significantly improves the survival and volume retention of fat grafts and can convey metabolically favorable properties on the recipient on the basis of beiging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app