Add like
Add dislike
Add to saved papers

OsFTIP1-Mediated Regulation of Florigen Transport in Rice Is Negatively Regulated by the Ubiquitin-Like Domain Kinase OsUbDKγ4.

Plant Cell 2017 March
Flowering time is a critical agronomic trait that determines successful seed production and adaptation of crop plants. Photoperiodic control of this process in flowering plants is mediated by the long-distance mobile signal called florigen partly encoded by FLOWERING LOCUS T ( FT ) in Arabidopsis thaliana and its orthologs in other plant species. Despite the progress in understanding FT transport in the dicot model Arabidopsis, the mechanisms of florigen transport in monocots, which provide most of the biomass in agriculture, are unknown. Here, we show that rice FT-INTERACTING PROTEIN1 (OsFTIP1), a member of the family of multiple C2 domain and transmembrane region proteins (MCTPs) and the closest ortholog of Arabidopsis FTIP1, is required for export of RICE FLOWERING LOCUS T 1 (RFT1) from companion cells to sieve elements. This affects RFT1 movement to the shoot apical meristem and its regulation of rice flowering time under long days. We further reveal that a ubiquitin-like domain kinase γ4, OsUbDKγ4, interacts with OsFTIP1 and modulates its degradation in leaves through the 26S proteasome, which in turn affects RFT1 transport to the shoot apical meristem. Thus, dynamic modulation of OsFTIP1 abundance in leaves by a negative regulator OsUbDKγ4 is integral to the role of OsFTIP1 in mediating RFT1 transport in rice and provides key evidence for a conserved role of FTIP1-like MCTPs in mediating florigen transport in flowering plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app