Add like
Add dislike
Add to saved papers

Kukoamine A attenuates insulin resistance and fatty liver through downregulation of Srebp-1c.

Nonalcoholic fatty liver disease (NAFLD) refers to a pathological condition of hepatic steatosis. Insulin resistance is believed to be the key mechanism mediating initial accumulation of fat in the liver, resulting in hepatic steatosis. Kukoamine A (KuA), a spermine alkaloid, is a major bioactive component extracted from the root barks of Lycium chinense (L. chinense) Miller. In the current study, we aimed to explore the possible effect of KuA on insulin resistance and fatty liver. We showed that KuA significantly inhibited the increase of fasting blood glucose level and insulin level, and the glucose levels in response to glucose and insulin load in HFD-fed mice, which was in a dose-dependent manner. KuA dose-dependently decreased the histological injury of liver, levels of hepatic triglyceride (TG), and serum AST and ALT activities in HFD-fed mice. The increase of serum levels of TNFɑ, IL-1β, IL-6 and C reactive protein in HFD-fed mice was inhibited by KuA. HFD feeding-induced increase of hepatic expression of Srebp-1c and its target genes, including fatty acid synthase (FAS) and acetyl CoA carboxylase 1 (ACC1), was significantly inhibited by KuA. Moreover, upregulation of Srebp-1c notably inhibited KuA-induced improvement of insulin-stimulated glucose uptake, decrease of lipid accumulation and H2 O2 level in palmitic acid-treated AML-12 cells. In conclusion, we reported that KuA inhibited Srebp-1c and downstream genes expression and resulted in inhibition of lipid accumulation, inflammation, insulin resistance and oxidative stress. Overall, our results provide a better understanding of the pharmacological activities of KuA against insulin resistance and hepatic steatosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app