JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sodium restriction modulates innate immunity and prevents cardiac remodeling in a rat model of metabolic syndrome.

In the view of the relationships between excessive sodium intake, immunity and target organ damage, we hypothesized that reduction in dietary sodium would be beneficial in the prevention of cardiac alterations through a restrained local immunity response in a rat model of metabolic syndrome. Sprague-Dawley rats were fed a 60% fructose diet with either a normal sodium (0.64% NaCl) or a low sodium content (<0.01% NaCl) for 8weeks. After 4weeks, rats were infused or not with angiotensin II (200ng·kg-1 ·min-1 , sc) for 4weeks. Tail-cuff blood pressure was determined in conscious rats. Heart and left ventricle weight, cardiomyocyte size, and cardiac fibrosis were evaluated. We performed a transcriptomic analysis in order to identify differentially regulated cardiac mRNAs between normal and low sodium diets. We validated those results using qPCR and immunohistochemistry. Angiotensin II-induced blood pressure rise was blunted (~50%) in the low-sodium fed rats while cardiac hypertrophy and fibrosis were prevented. Transcriptomic analysis revealed 66 differentially regulated genes including 13 downregulated genes under the low sodium diet and implicated in the innate immune response. This was confirmed by reduced cardiac macrophages infiltration under the low sodium diet. Dietary sodium restriction prevents structural alterations of the heart of rats with fructose-induced insulin resistance and angiotensin II-hypertension. The reduction of cardiac inflammation and macrophage infiltration suggests that innate immunity has an important role in the beneficial effect of sodium restriction on cardiac remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app