Add like
Add dislike
Add to saved papers

Bioaccumulation and the expression of hepatic cytochrome P450 genes in marine medaka (Oryzias melastigma) exposed to difenoconazole.

This study was conducted to assess the effects of difenoconazole (DFZ), a triazole fungicide, on the hepatic biotransformation system and its bioaccumulation in marine medaka (Oryzias melastigma). Fish were exposed to DFZ (1, 10, 100, 1000ng/L) for 180days. The results showed that: (1) The mRNA levels of hepatic CYP1A1, CYP1B, CYP1C1, CYP27B and CYP3A40 were up-regulated, but those of CYP3A38 and CYP27A1 were down-regulated. (2) The activity of ethoxyresorufin-O-deethylase (EROD) and the content of reduced glutathione (GSH) in the liver were increased in the DFZ-treated groups, and glutathione S-transferase (GST) activity was increased in the 100 and 1000ng/L groups. (3) DFZ was accumulated in the muscle and the biological concentration factors in the 10, 100, and 1000ng/L groups were respectively 149, 81 and 25. These results suggested that long-term exposure to DFZ at low concentrations would result in a bioaccumulation of this compound and disturb the biotransformation system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app