JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Simple Cargo Sequestration Assay for Quantitative Measurement of Nonselective Autophagy in Cultured Cells.

Autophagy (self-eating) is a common term for various processes by which cellular components are transferred to lysosomes for degradation. In macroautophagy, intracellular membrane structures termed "phagophores" expand to encapsulate autophagic cargo into sealed, double-membrane vacuoles termed "autophagosomes," which subsequently may fuse with endosomes to form intermediary vacuoles called "amphisomes," and finally with lysosomes to have their contents degraded and recycled. Autophagy is frequently analyzed by monitoring phagophore- and autophagosome-associated markers such as LC3. Although useful, it is becoming increasingly clear that very few, if any, of these marker proteins are entirely specific to the autophagic process. Moreover, phagophore/autophagosome markers cannot be used to measure autophagic activity since they are part of the autophagic machinery, or "cart," rather than autophagic cargo. Thus, there is a great need for functional assays in autophagy research. Here, we describe a method that quantitatively measures the nonselective autophagic sequestration of endogenous cytosolic cargo. The method is based on a crude separation of sedimentable cellular material from cytosol and a subsequent measurement of the fraction of a cytosolic enzyme activity transferred to the sedimentable fraction by autophagic sequestration. The original assay was first developed in 1990, but during the last few years we have systematically downscaled and simplified the method into the time- and cost-efficient procedure presented here, which can be performed with standard laboratory equipment and is suitable for any cell type.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app