Add like
Add dislike
Add to saved papers

An Lp (0 ≤ p ≤ 1)-norm regularized image reconstruction scheme for breast DOT with non-negative-constraint.

BACKGROUND: In diffuse optical tomography (DOT), the image reconstruction is often an ill-posed inverse problem, which is even more severe for breast DOT since there are considerably increasing unknowns to reconstruct with regard to the achievable number of measurements. One common way to address this ill-posedness is to introduce various regularization methods. There has been extensive research regarding constructing and optimizing objective functions. However, although these algorithms dramatically improved reconstruction images, few of them have designed an essentially differentiable objective function whose full gradient is easy to obtain to accelerate the optimization process.

METHODS: This paper introduces a new kind of non-negative prior information, designing differentiable objective functions for cases of L1-norm, Lp (0 < p < 1)-norm and L0-norm. Incorporating this non-negative prior information, it is easy to obtain the gradient of these differentiable objective functions, which is useful to guide the optimization process.

RESULTS: Performance analyses are conducted using both numerical and phantom experiments. In terms of spatial resolution, quantitativeness, gray resolution and execution time, the proposed methods perform better than the conventional regularization methods without this non-negative prior information.

CONCLUSIONS: The proposed methods improves the reconstruction images using the introduced non-negative prior information. Furthermore, the non-negative constraint facilitates the gradient computation, accelerating the minimization of the objective functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app