Add like
Add dislike
Add to saved papers

Contribution of formant frequency information to vowel perception in steady-state noise by cochlear implant users.

Cochlear implant (CI) recipients have difficulty understanding speech in noise even at moderate signal-to-noise ratios. Knowing the mechanisms they use to understand speech in noise may facilitate the search for better speech processing algorithms. In the present study, a computational model is used to assess whether CI users' vowel identification in noise can be explained by formant frequency cues (F1 and F2). Vowel identification was tested with 12 unilateral CI users in quiet and in noise. Formant cues were measured from vowels in each condition, specific to each subject's speech processor. Noise distorted the location of vowels in the F2 vs F1 plane in comparison to quiet. The best fit model to subjects' data in quiet produced model predictions in noise that were within 8% of actual scores on average. Predictions in noise were much better when assuming that subjects used a priori knowledge regarding how formant information is degraded in noise (experiment 1). However, the model's best fit to subjects' confusion matrices in noise was worse than in quiet, suggesting that CI users utilize formant cues to identify vowels in noise, but to a different extent than how they identify vowels in quiet (experiment 2).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app