Add like
Add dislike
Add to saved papers

Discovery of Benzenesulfonamides with Potent Human Carbonic Anhydrase Inhibitory and Effective Anticonvulsant Action: Design, Synthesis, and Pharmacological Assessment.

We report two series of novel benzenesulfonamide derivatives acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesized compounds were tested against human (h) isoforms hCA I, hCA II, hCA VII, and hCA XII. The first series of compounds, 4-(3-(2-(4-substitued piperazin-1-yl)ethyl)ureido)benzenesulfonamides, showed low nanomolar inhibitory action against hCA II, being less effective against the other isoforms. The second series, 2-(4-substitued piperazin-1-yl)-N-(4-sulfamoylphenyl)acetamide derivatives, showed low nanomolar inhibitory activity against hCA II and hCA VII, isoforms involved in epileptogenesis. Some of these derivatives were evaluated for their anticonvulsant activity and displayed effective seizure protection against MES and scPTZ induced seizures in Swiss Albino mice. These sulfonamides were also found effective upon oral administration to Wistar rats and inhibited MES induced seizure episodes in this animal model of the disease. Some of the new compounds showed a long duration of action in the performed time course anticonvulsant studies, being nontoxic in subacute toxicity studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app