Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Electrochemical Investigation of Arsenic Redox Processes on Pyrite.

The specific Eh-pH conditions and mechanism(s) for the reduction of arsenite, As(III), by pyrite are incompletely understood. A fundamental question is what role the pyrite surface plays in the reduction process. We used electrochemical methods to evaluate the reduction of As(III) under controlled redox conditions. As(III) reduction to elemental As(0) occurs on the pyrite surface under suboxic-reducing conditions and is promoted at low pH. Remarkably, As(III) reduction on pyrite occurs at similar potentials to those for reduction on platinum metal, suggesting a similar mechanism and kinetics for these surfaces. The onset for As(III) reduction at pH ≤ 3.5 coincides with the potential for hydrogen electroadsorption on pyrite, E ≈ +0.1 V (versus RHE). Batch reactions show that As(III) is reduced on pyrite at the Eh-pH predicted by the electrochemical study. X-ray photoelectron spectroscopy reveals that, at pH ≤ 3.5, a significant fraction of the surface arsenic (30-60%) has an oxidation state consistent with As(0). Here, we propose a mechanism whereby atomic hydrogen that forms on ferric (hydr)oxide surface layers promotes As(III) reduction at low Eh and pH. Insights provided by this study will have implications for understanding the controls on dissolved As(III) concentrations in suboxic-anoxic environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app