JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Obtaining a Panel of Cascade Promoter-5'-UTR Complexes in Escherichia coli.

A promoter is one of the most important and basic tools used to achieve diverse synthetic biology goals. Escherichia coli is one of the most commonly used model organisms in synthetic biology to produce useful target products and establish complicated regulation networks. During the fine-tuning of metabolic or regulation networks, the limited number of well-characterized inducible promoters has made implementing complicated strategies difficult. In this study, 104 native promoter-5'-UTR complexes (PUTR) from E. coli were screened and characterized based on a series of RNA-seq data. The strength of the 104 PUTRs varied from 0.007% to 4630% of that of the PBAD promoter in the transcriptional level and from 0.1% to 137% in the translational level. To further upregulate gene expression, a series of combinatorial PUTRs and cascade PUTRs were constructed by integrating strong transcriptional promoters with strong translational 5'-UTRs. Finally, two combinatorial PUTRs (PssrA -UTRrpsT and PdnaKJ -UTRrpsT ) and two cascade PUTRs (PUTRssrA -PUTRinfC-rplT and PUTRalsRBACE -PUTRinfC-rplT ) were identified as having the highest activity, with expression outputs of 170%, 137%, 409%, and 203% of that of the PBAD promoter, respectively. These engineered PUTRs are stable for the expression of different genes, such as the red fluorescence protein gene and the β-galactosidase gene. These results show that the PUTRs characterized and constructed in this study may be useful as a plug-and-play synthetic biology toolbox to achieve complicated metabolic engineering goals in fine-tuning metabolic networks to produce target products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app