Add like
Add dislike
Add to saved papers

Defects in crystalline PVDF: a density functional theory-density functional tight binding study.

We present a comparative density functional theory (DFT) and density functional tight binding (DFTB) study of structures, energetics, vibrational properties as well as electronic structures of the four crystalline phases of polyvinylidene fluoride (PVDF) with different types of defects. For pure phases, the relative energies of PVDF strands (i.e. absent van der Walls bonding) agree well between DFT (using a GGA or a hybrid functional) and DFTB. For crystals, DFTB needs to be calibrated due to deficiencies in the treatment of vdW interactions. Defect formation energies were computed in large-scale DFTB simulations. For single chain vacancies, they are 0.41, 0.59, 0.08 and 0.40 eV per monomer removed in α, β, γ, and δ PVDF, respectively. The energy required to form double vacancies is 0.38, 0.52, 0.33 and 0.39 eV per monomer removed, respectively, i.e. the effect is nearly additive except in the γ phase. Interstitial defects were found to be unstable and convert into vacancies. The relatively high defect formation energies (vs. kT at room temperature) imply that phase purity is feasible in PVDF. Vibrational contributions affect the relative phase energies by up to 0.1 eV but do not significantly affect the relative phase stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app