JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Shrinking instability of toroidal droplets.

Toroidal droplets are inherently unstable due to surface tension. They can break up, similar to cylindrical jets, but also exhibit a shrinking instability, which is inherent to the toroidal shape. We investigate the evolution of shrinking toroidal droplets using particle image velocimetry. We obtain the flow field inside the droplets and show that as the torus evolves, its cross-section significantly deviates from circular. We then use the experimentally obtained velocities at the torus interface to theoretically reconstruct the internal flow field. Our calculation correctly describes the experimental results and elucidates the role of those modes that, among the many possible ones, are required to capture all of the relevant experimental features.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app