Add like
Add dislike
Add to saved papers

Phosphoregulation of Tau modulates inhibition of kinesin-1 motility.

Microtubule-based axonal transport is tightly regulated by numerous pathways, ensuring appropriate delivery of specific organelle cargoes to selected subcellular domains. Highlighting the importance of this process, pathological evidence has linked alterations in these pathways to the pathogenesis of several neurodegenerative diseases. An important regulator of this system, the microtubule-associated protein Tau, has been shown to participate in signaling cascades, modulate microtubule dynamics, and preferentially inhibit kinesin-1 motility. However, the cellular means of regulating Tau's inhibition of kinesin-1 motility remains unknown. Tau is subject to various posttranslational modifications, including phosphorylation, but whether phosphorylation regulates Tau on the microtubule surface has not been addressed. It has been shown that tyrosine 18 phosphorylated Tau regulates inhibition of axonal transport in the disease state. Tyrosine 18 is both a disease- and nondisease-state modification and is therefore an attractive starting point for understanding control of Tau's inhibition of kinesin-1 motility. We show that pseudophosphorylation of tyrosine 18 reduces 3RS-Tau's inhibition of kinesin-1 motility. In addition, we show that introduction of negative charge at tyrosine 18 shifts Tau's previously described static-dynamic state binding equilibrium toward the dynamic state. We also present the first evidence of Tau's static-dynamic state equilibrium under physiological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app