Add like
Add dislike
Add to saved papers

Procaine Inhibits Proliferation and Migration and Promotes Cell Apoptosis in Osteosarcoma Cells by Upregulation of MicroRNA-133b.

Oncology Research 2017 November 3
Procaine (PCA) is a conventional chemotherapeutic agent for osteosarcoma. Recent studies have proposed that the growth-inhibitory effect of PCA is through regulation of microRNAs (miRNAs). miR-133b has been proven to be a tumor suppressor in osteosarcoma, but whether it is involved in the antitumor effects of PCA on osteosarcoma has not been investigated. In this study, we aimed to explore the effects of PCA on osteosarcoma MG63 cells by regulation of miR-133b, as well as its underlying mechanisms. MG63 cells were treated with different concentrations of PCA, and cell viability, apoptosis, and miR-133b expression were then detected by MTT, flow cytometry, and qRT-PCR, respectively. Cells were then transfected with the miR-133b inhibitor and treated with 2 μM PCA. Thereafter, cell viability, migration, and apoptosis were detected. Analysis of signaling pathways was detected by Western blot. Our results showed that PCA significantly inhibited cell viability and promoted apoptosis and the expression level of miR-133b in a dose-dependent manner (p < 0.05 or p < 0.01). Moreover, we observed that PCA + miR-133b inhibitor dramatically reversed the effects of PCA on cell viability, apoptosis, and migration (p < 0.05 or p < 0.01). In addition, PCA significantly decreased the levels of p/t-AKT (p308 or p473), p/t-ERK, and p/t-S6, whereas PCA + miR-133b inhibitor rescued these effects. Our results suggest that PCA inhibits proliferation and migration but promotes apoptosis in osteosarcoma cells by upregulation of miR-133b. These effects may be achieved by inactivation of the AKT/ERK pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app