Add like
Add dislike
Add to saved papers

Highly Sensitive Textile Strain Sensors and Wireless User-Interface Devices Using All-Polymeric Conducting Fibers.

Emulation of diverse electronic devices on textile platform is considered as a promising approach for implementing wearable smart electronics. Of particular, the development of multifunctional polymeric fibers and their integration in common fabrics have been extensively researched for human friendly wearable platforms. Here we report a successful emulation of multifunctional body-motion sensors and user-interface (UI) devices in textile platform by using in situ polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)-coated fibers. With the integration of PEDOT fibers in a fabric, via an optimization of the fiber pattern design, multifunctional textile sensors such as highly sensitive and reliable strain sensors (with maximum gauge factor of ∼1), body-motion monitoring sensors, touch sensors, and multilevel strain recognition UI devices were successfully emulated. We demonstrate the facile utilization of the textile-based multifunctional sensors and UI devices by implementing in a wireless system that is capable of expressing American Sign Language through predefined hand gestures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app