JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fascin phosphorylation sites combine to regulate esophageal squamous cancer cell behavior.

Amino Acids 2017 May
Filopodia are dynamic membrane extensions generated by F-actin bundling and are involved in cancer cell migration, invasion and metastasis. Fascin is the crucial actin-bundling protein in filopodia, with phosphorylation at fascin serine 39 being well characterized to regulate fascin-mediated actin bundling in filopodia. However, increasing evidence indicates that fascin is phosphorylated at a number of sites. Whether phosphorylation at other sites also regulates fascin function is unknown. In this study, we show that four potential phosphorylation sites in fascin, specifically tyrosine 23, serine 38, serine 39 and serine 274, regulate cell behavior and filopodia formation in esophageal squamous cancer cells. Expression of non-phosphorylatable mutations at each of the four sites promoted anchorage-independent growth, cell motility and filopodia formation, whereas phosphomimetic mutations at each of these sites inhibited these cell behaviors, implying that fascin function in esophageal squamous cancer is regulated by fascin phosphorylation at multiple sites. Furthermore, phosphorylation at S38 and S39 cooperatively regulated cell behavior and filopodia formation, with dual dephosphorylation at both S38 and S39 residues maximally enhancing cell proliferation, migration and filopodia formation, and phosphorylation at any of the two phosphorylatable sites resulting in reduced enhancement. Taken together, our results reveal that phosphorylation at fascin amino acids Y23, S38, S39 and S274, in combination, downregulates the extent of anchorage-independent growth, cell migration and filopodia formation in esophageal squamous cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app