Add like
Add dislike
Add to saved papers

Insights from the predicted structural analysis of carborane substituted withaferin A with Indoleamine - 2,3-dioxygenase as a potent inhibitor.

Indoleamine-2,3-dioxygenase (IDO) an immunoregulatory enzyme and emerging as a new therapeutic drug target for the treatment of cancer. Carboranes, an icosahedral arrangement of eleven boron atoms plus one carbon atom with unique pharmacological properties such low toxicity, isosterism with phenyl ring and stability to hydrolysis. On the other hand, carboranes are known to increase the interaction of ligand with non-polar region of the protein provides an excellent platform to explore these carboranes towards designing and development of novel, potent and target specific drug candidates with further enhanced binding affinities. Despite of their many potential applications, molecular modeling studies of carborane-substituted ligands with macromolecules have been rarely reported. Previously, we have demonstrated the promising high binding affinity of Withaferin-A (WA) for IDO. In this present study, we investigated the effect of carborane substitutions on WA compound towards developing novel analogs for target specific IDO inhibition with better potency. Interesting docked poses and molecular interactions for the carborane substituted WA ligands were elucidated. Based on our In-silico studies, carborane substituted at various position of WA has shown enhanced binding affinity towards IDO, worth of considering for further studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app