Add like
Add dislike
Add to saved papers

Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis.

Journal of Immunology 2017 April 16
The bone marrow (BM) contains controlled specialized microenvironments, or niches, that regulate the quiescence, proliferation, and differentiation of hematopoietic stem and progenitor cells (HSPC). The glucose-dependent insulinotropic polypeptide (GIP) is a gut-derived incretin hormone that mediates postprandial insulin secretion and has anabolic effects on adipose tissue. Previous studies demonstrated altered bone microarchitecture in mice deficient for GIP receptor ( Gipr-/- ), as well as the expression of high-affinity GIP receptor by distinct cells constructing the BM HSPC niche. Nevertheless, the involvement of GIP in the process of BM hematopoiesis remains elusive. In this article, we show significantly reduced representation and proliferation of HSPC and myeloid progenitors in the BM of Gipr-/- mice. This was further manifested by reduced levels of BM and circulating differentiated immune cells in young and old adult mice. Moreover, GIP signaling was required for the establishment of supportive BM HSPC niches during HSPC repopulation in radioablated BM chimera mice. Finally, molecular profiling of various factors involved in retention, survival, and expansion of HSPC revealed significantly lower expression of the Notch-receptor ligands Jagged 1 and Jagged 2 in osteoblast-enriched bone extracts from Gipr-/- mice, which are important for HSPC expansion. In addition, there was increased expression of CXCL12, a factor important for HSPC retention and quiescence, in whole-BM extracts from Gipr-/- mice. Collectively, our data suggest that the metabolic hormone GIP plays an important role in BM hematopoiesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app