Add like
Add dislike
Add to saved papers

Hypothesis: Why θNO could be finite in vitro but infinite in vivo.

There is controversy as to whether the lung Diffusing Capacity for Nitric Oxide (DLNO) is a direct measure of DM in the Roughton-Forster equation or whether θNO is finite and DM is greater than DLNO. Despite in vitro evidence that θNO is finite, some groups believe that it is infinite in vivo and that DMNO/DMCO (α) is greater than predicted by the combined Fick/Graham law of Gas Diffusion through a membrane. We here present a hypothesis applying the fundamental rules of combined diffusion and chemical reaction to a red cell to explain (i) why θNO could be finite in vitro but effectively infinite in vivo and (ii) why ∝ could appear greater than predicted. DLNO would mainly reflect the conductance of the alveolar capillary membrane with a smaller contribution from plasma and minimal contribution from the outermost layers of the red cell. If this hypothesis is correct DMCO and Vc could not be obtained from a combined DLNO and DLCO manoeuvre since these variables would differ for NO and for CO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app